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A Painlev6 analysis is performed for the nonlinear Schr6dinger equation in 
(2+ 1) dimensions following the methodology of Weiss et al. simplified in the 
sense of Kruskal. At least for one branch it is found that the required number 
of arbitrary functions (as demanded by the Cauchy-Kovalevskaya theorem) 
exists, signalling complete integrability. 

1. INTRODUCTION 

The question of the integrability of nonlinear partial differential 
equations has gained a tremendous boost in the last decade due to the 
relationship that exists between the chaotic behavior of some systems and 
nonintegrability (Ramai et  al., 1986). Of late various classes of equations 
have been analyzed on the basis of the Painlev6 test (Weiss et  al., 1983; 
Weiss, 1983, 1984a,b). Although the Painlev6 test is not a necessary and 
sufficient condition for integrability of a p.d.e., it has worked in many known 
and important situations. Here we report one such analysis for the nonlinear 
Schr6dinger equation (NLSE) two space (+ one time) dimensions 
(Mukherjee and Roy Chowdhury, 1985). The only other equation in (2+ 1) 
dimensions whose Painlev6 analysis has been done is the KP equation 
(Chudnovsky et al., 1983). It is found that the 2D NLSE is completely 
integrable in the sense of the Painlev6 test, satisfying all the requirements 
of the Cauchy-Kovalevskaya theorem. 

The 2D NLSE is written as 

p,  = Apxx  - Bpyy + ( r - s ) p 

qt = Bqyy - A q x x  + (s  - r ) q  
(1) 

rx = 2 B ( p q ) y  

sy = 2 A ( p q ) x  
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2. L E A D I N G  O R D E R  A N A L Y S I S  

To estimate the leading singularity we assume 

p ~ p o d ~ ;  q - q o c ~ ;  r - rod~V;  S~So fb  ~ (2) 

where cb = x - f ( y ,  t) and (Po, q0, to, So) are all functions of  (y, t). This form 
of assumption was used by Jimbo et al. (1982) and Goldstein and Infeld 
(1984), and was initially suggested by M. Kruskal (private communication),  
whereas, according to the original prescription of Weiss et al. (1983), q~ is 
a general function of (x, y, t). I f  we substitute (2) in (1) and consider that 
these exponents will be all negative integers, then we get o~ = - 1 ,  fi = - 1 ,  
y = - 2 ,  ~ = - 2 ,  whereas the leading equations are 

po,~ b '~ -- a~po~b'~-lf 

= A p o a ( a  - 1)r "-2 - Bpoyydp r + 2BpoyC~Ch"-'fy 

- B p o a ( a  - 1) r ~-2f~ + Bp o a 6 ~- l f y y  + roPor ~+r - soPoga ~+~ (3a) 

qotdp ~ - flqoO t~-l f 

= Bqoyy613 - 2Bqoyf l6~-~fy  + Bqofl(/3 - 1) 6t3-zf~ 

- Bqo/3Cht3-1fyy - Aqo/3(/3 - 1) 6t3-2 + qoso6 ~+' - qorocb ~+~ (3b) 

roy4)r-~=2B(poqo)yCb ~+t3 - 2 B ( p o q o ) ( a + f l ) 6 " + ~ - ~ f y  (3c) 

Soy~b ~ - So86 8-~fy = 2 A ( p o q o ) ( a  +/3)~+~-1 (3d) 

Most singular terms, when equated leads to 

Poqo = - f y ,  ro = 2 B f  ~, So = 2A (4) 

so that one of (Po, qo) is arbitrary. Note that we may have other possibilities 
for the exponents (a,/3, y, 6), for example, 8 = y = -1 ,  but a +13 = -1 .  But 
in these cases the leading equations are almost decoupled: 

A p x ~ -  Bpyy =0,  B q y y - A q ~  =0,  r~ = 2 B ( p q ) y ,  S y = 2 A ( p q ) x  

(5) 

Since all the exponents are nonnegative integers (as a + / 3  = - 1 )  and the 
leading equations are decoupled, we do not consider these cases. 

Another possibility is 8 = - 2 ,  y = - 2 ,  ~ +/3 = - 2 ,  ~ # - 1 ,  /3 r  In 
this case we may have several fractional values of  (~,/3) so that a +/3 = -2 .  
But in these cases the basic assumption of a moving pole structure is violated. 
Some authors speak of such situations as having the weak Painlev6 property. 
In this case also we get completely decoupled leading order equations. 
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U n d e r  the above  c i rcumstances  we p r o c e e d  to search for  the  r e sonance  

pos i t ions  on ly  in the first case. 

2. R E S O N A N C E  P O S I T I O N S  

To ob ta in  the  system mat r ix  giving yhe  r e sonance  pos i t ions ,  we now set 
oo co 

p = ~ pj~bJ-x; q = ~ o~dfi -l 
j = O  j = O  

cx~ co 

r = E rj6J-2;  s = E s j6  j -2  
j = O  j = O  

Equa t ing  coefficients o f  d/"-3,  we get 

A ( m  - 1)(m - 2) + t o -  So 0 
- B ( m - 1 ) ( m - 2 ) f ~  

0 - A ( m  - 1)(m - 2 )  - ro+ So 
+ B ( m -  1 ) ( m - 2 ) f  2 

2 Bf~.qo (m - 2) 2 Bfyp0 (m - 2) 

2Aqo( m - 2) 2Apo( m - 2) 

(6) 

P 0  - - P 0  

- qo qo 

m - 2  0 

0 (m - 2)fy 

Pm X 

qm Y 
m - - 1  rn--1  

• r,~ = 2B ~ (p  . . . .  ~q~)y -2Bfy  ~ p m _ ~ q ~ ( m - 2 )  (7) 
n = O  n ~ l  

m - - 1  

sm sm_a.~,-2A ~ pm-nqn(m- -2 )  
n = l  

where  the express ions  X and  Y are given as 

X -- Pm-2,, - p m - l ( m  - 2 ) f  + Bp(m-2)yy - 2Bp(m_l)y  

m - - 1  m - - 1  

x ( m - E ) f y - B p m _ l ( m - 2 ) f y y +  E r m - . p . -  Y. S m - . p . ,  
n = l  n = l  

(8) 
Y = qm-2,  - q m - t ( m  - 2 ) f  - Bqm-zyy  + 2 B q m - l y ( m  - 2)fy 

m - 1  m - - 1  

+ B q m _ l ( m - 2 ) f y y -  ~ s m _ . q . +  ~ rm_ .q .  
n = l  n ~ l  

Resonance  pos i t ions  are  those  values  at m = r for  which  the d e t e r m i n a n t  
o f  the sys tem mat r ix  [occur r ing  on  the l e f t -hand  side o f  (7)] vanishes .  I t  is 
found  tha t  

de t [ .  ] -- (m + 1 ) m ( m  - 2)2(m - 3 ) ( m  - 4 )  

so tha t  we get  r e sonances  at  

r - - - l ,  0, 2, 2, 3 , 4  (9) 
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3. C O E F F I C I E N T S  O F  E X P A N S I O N  AT T H E  
R E S O N A N C E  P O S I T I O N  

Case  a. r = - 1 .  This co r r e sponds  to the  a rb i t ra r iness  o f  

d~ = x -  f ( y ,  t) (10a) 

Case b. r = 0. This represents  the a rb i t ra r iness  o fpo  or  qo [see equa t ion  
(4)]. 

Case  c. r = 1. We get  f rom (7) 

1 
P l - ( -  BpoLy + q o f  + 2 Bpoyfy) 

r o -  So 

1 (10b) 
ql - ( -  Bqofyy - qoft + 2Bqofy) 

ro - So 

rl = 2Bfy r, Sl = 0 

Case d. r = +2  (doub le  resonance) .  In  this  case 

1 
P2 = [--Po(/'2 -- S2) +Pot + npoyy - rls1] 

r 0 -  So 

1 (11) 
q2 - [ -qo( r2  - s2) - qot + Bqoyy - rlsl] 

ro - So 

r2 = s2 a rb i t ra ry  

subjec t  to the  compa t ib i l i t y  cond i t ion  

(Poql +Paqo)y = O, Sly = 0 

which are  ob t a ined  f rom the th i rd  and  four th  rows o f  (7). But it is not  
difficult  to  verify that  these  cond i t ions  are  ident ica l ly  sat isf ied by  those  
ob t a ined  in equa t ions  (4), (10a),  and  (10b). 

Case  e. r = 3. Here  we get  

r3 = 2B(p2qo + paq~ + Poq2)y -- 2Bfy(p3qo + p2ql + P~q2 + Poq3) 

1 
$3 =~vv[S2y -- 2 a ( p 3 q o +  p2ql + p l q 2 +  Poq3)] 

fy f 1 
(qoP3 + Poq3) = ro - So ~ -  fy ( rO - So)( P2ql + q2Pl) (12) 

+ 2 B ( p 2 q o + p l q l + p o q o ) y  S2y 
f ,  

1 
- - - - [ P l ,  --P2ft -4- nplyy - -  2Bp2,fy 

Po 

- Bp2fyy + s2ql - r2ql - r lp2][  
J 
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Therefore  one of  P3, q3 can be assumed  to be arbitrary,  subject  to the 
fol lowing compat ib i l i ty  condit ion:  

2Bf(  poqzy - qoP2) + 3 Bfyy( poq2 - qoP2) 

- ( p o q 2 + q o P 2 ) f y + ( p o q l - q o P O ( r ~ - s z ) + ( q o p ~ , + p o q ~ , )  (13) 

+ B(qoP~yy --Poqlyy) + s~(qoP2-Poq2) = 0 

But by substi tut ing the values of  (Po, qo), (P2, q2), etc., it can be seen that  
(13) is identical ly satisfied. 

Case f. r = 4. At the last resonance  posi t ion the recurrence relat ion 
leads to 

r4 = l [ _ 4 B f y  ( qoP4 + Poq4) + 2 B ( p3 qo + P2q~ + Pl q2 + Poq3)y 

- 4 B f y ( p 3 q l  + p2q2 + plq3) ] 
1 

s4 = -fffyy [ - 4 a (  qop4 + poq4) + S3y - 4 a (  q3p~ + P2q2 + P3ql)] 

(14) 1 
So-  ro (fy[ B(p3q~ + p2q' + p l q 2 +  qoP3)y 

- 2Bfy(p3q, +P2q2 +P~q3)] 

- [�89 - 2A(p3q,  + P2q2 + Pl q3)]} 

(qoP4-Poq4) = + 

subject  to a compat ib i l i ty  condi t ion that  comes  f rom the r ight -hand side of  
the recurs ion relat ion (7). The said condi t ion is 

(Poq2t - qoP2t) -2 (poq3  - qoP3)ft - B(poq2yy + qoP2yy) 

+4B(poq3y + qoP3y)fy + 2B(qoP3 + Poq3)fyy + r3(poq, + Plqo) 

+ r2(poq2 + qoP2) + r~(poq3 +P3qo) - s3(Poql + qoP~) 

- s2(poq2 + P2 qo) - Sa (poq3 + qo P3) - 2{fy [ B (p3 qo + P2 q~ 

+ p~q2 + Poq3)y - 2Bfy(P3ql + P2q2 + plq3) ] 

- [�89 - 2 a ( p 3 q ~  +P2qz+Plq3)]} = 0 (15) 

It is really amusing  to note that  such a compl ica ted- looking  equat ion  is 
also identically satisfied by  the coefficients de te rmined  previously.  
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4. C O N C L U S I O N  

The above analysis shows that our  equat ion has six resonances at r = - 1 ,  
0, 2, 2, 3, 4 and we can have six arbitrary coefficients at these resonances  
posit ions [ including (a(x, y, t ) =  x - f  (y, t)]. So the Cauchy -Kova l evskaya  
theorem immediately suggests that  our  equat ion does conform to the 
Painlev6 criterion o f  complete  integrability. 

At this point  it might  not  be out o f  place to note our  Painlev6 analysis 
cannot  be used to deduce  the Lax pair  because as, in the case o f  a coupled  
system, there is still no concrete method to deduce  the Lax pair  for  coupled  
nonl inear  equations.  
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